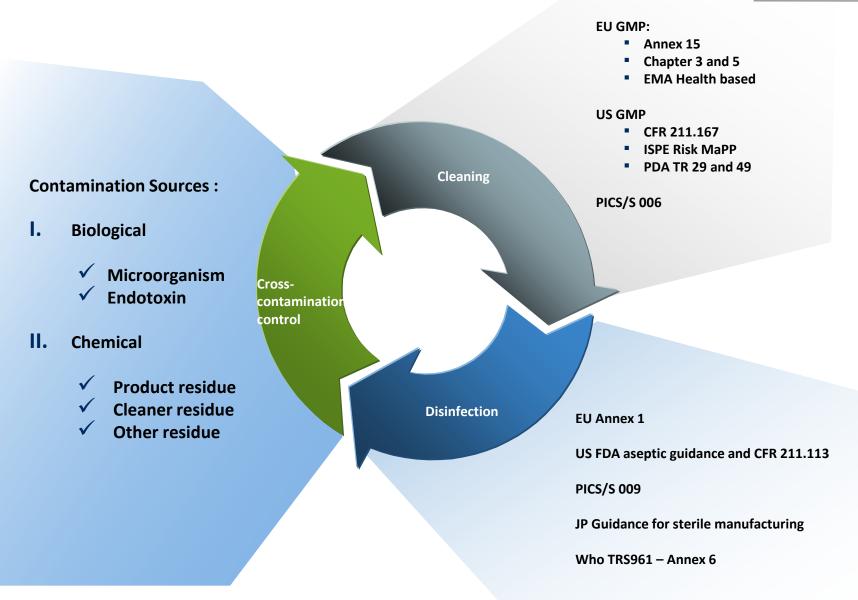


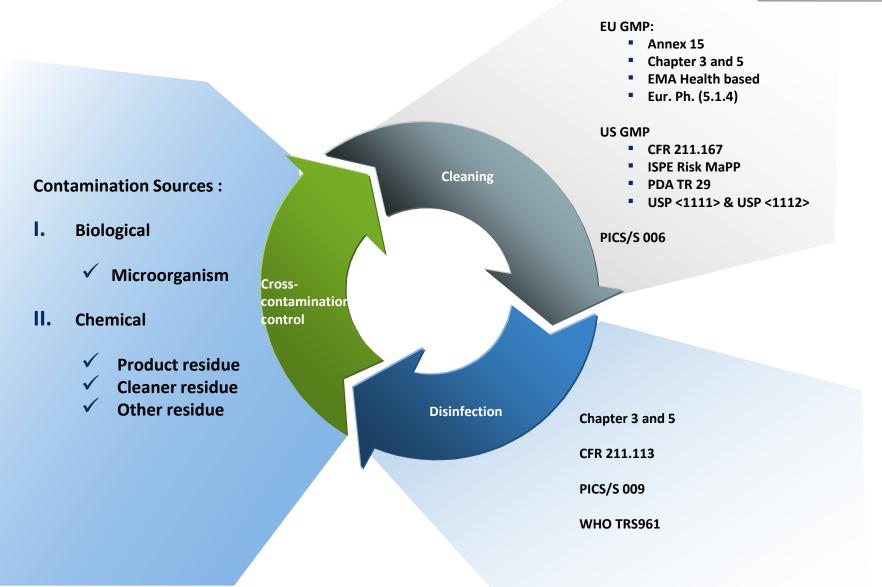
Cleaning & Disinfection Regulations and best practices for sterile and non sterile manufacturing



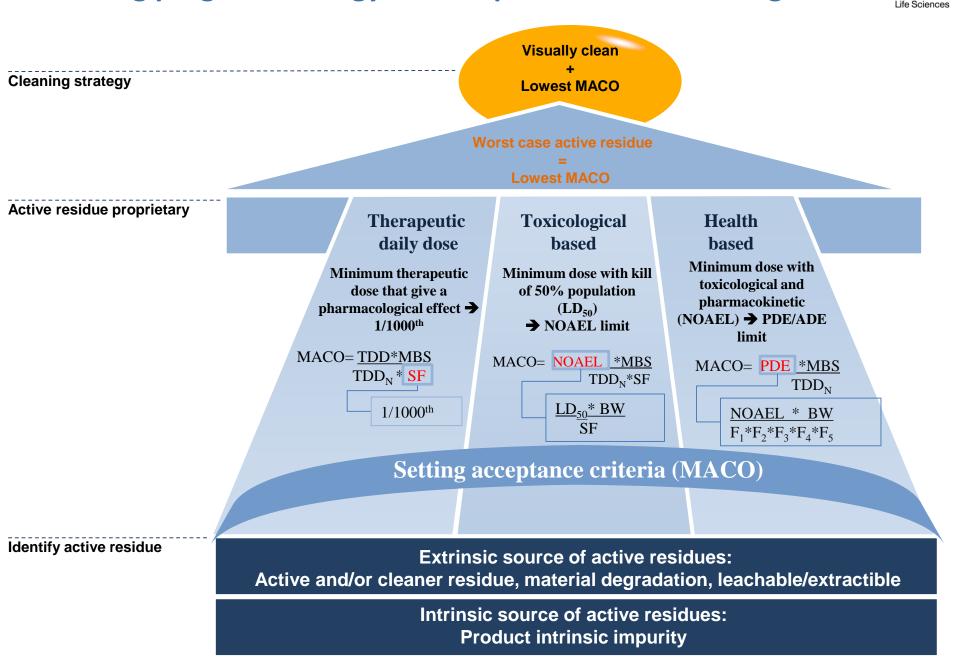
Dawn Ray Account Manager

Science & Solutions for Life

📄 STERIS **Regulation Requirements: Cross-contamination Control Management for sterile**


NON EXHAUSTIVE LIST

Regulation Requirements: Cross-contamination Control Management for non sterile



📄 STERIS

Cleaning program strategy for acceptance criteria setting

Annex 1 Future – What to Expect?

SELF INTERPRETATION

Structure of the document :

- double the number of pages
- add chapter about biofilm management, air quality
- Scope is only aseptic + no change of the title
- Current Technology: RABS, Isolators... LAF is accepted but...

Emphasis on:

- Root cause investigation, CAPA effectiveness and product assessment
- Personnel training and knowledge
- keep the operator away from the product RABS, Isolators

Align with other documents:

- EU GMP and Eur. Ph. Water for Injection productions
- ISO 14644 except for 5µm in routine monitoring

JP, PIC/S, FDA did share their comments to the EMA on the draft Annex 1

CONVENTION PHARMACEUTICAL INSPECTION CO- OPERATION SCHEME 8 January 2015

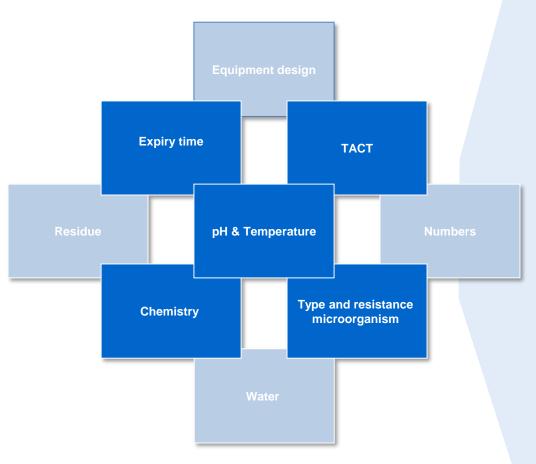
ROPEAN MEDICINES AGENCY

Inspectors Working Group (GMP/GDP IWG

t paper on the revision of annex 1 of the es on good manufacturing practice – manufact

houary 2015

Factors of Microbial Contamination


Influencing Factors

PRODUCT FORMULATIION	 A_w > 0.6 optimal for microorganism growth Viscosity can influence microorganism growth Absence of preservative in the product Product nature can enhance or inhibit microorganism proliferation 	n
RAW and PACKAGING MATERIAL	 Set microbial limit for raw material, packaging material Control the impact of multi- use on the microbial growth 	
PERSONNEL	 Effective behavior and gowning procedure Effective cleaning and sanitization procedure 	BEST WAY TO AVOID MICROORGANISM
CLEAN ROOM and UTILITIES	 Adequate process/equipment/product flows Utilities systems under control and correctly maintained Effective cleaning and disinfection program Adequate housekeeping 	CONTAMINATION IS TO CONTROL THESE FACTORS
EQUIPMENT	 Adequate equipment design and maintenance program Effective process equipment cleaning and sanitization program 	
CLEANING and DISINFECTION	 Adequate control of the CPP and CQA Ineffective cleaner or disinfectant against microbial contaminant 	

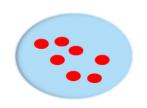
Parameters Affecting Cleaning and Disinfection Performance

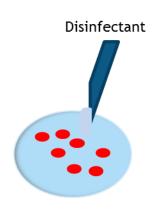

Life Sciences

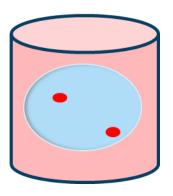
STERIS

Equipment design	Design is one of the key aspect for effective cleaning and disinfection. 100% recovery should always be reached.
ТАСТ	Time, action, concentration and temperature are considered critical process parameter for effective cleaning
Numbers	Disinfectant is more effective against low number of microorganism than high number
Type and resistance	Sporicidal agent kills spore and vegetative microorganism. However, non oxidizing disinfectant kill vegetative microorganisms and could kill some spore microorganisms
Water	Hard water could reduce efficacy of many disinfectants
Chemistry	The choice of the chemistry should depend on the residue nature and aspect
Residue	Residue should not interfere with the disinfectant efficacy. Rinse strategy should be put in place periodically.
pH & temperature	pH could influence the ionic biding of disinfectant, while temperature could affect the log kill over time (Q10).
Expiry time	The quality and flow of new ideas and ability to adapt and shape the organisation as needed

Efficacy of the disinfectant is demonstrated through performance testing

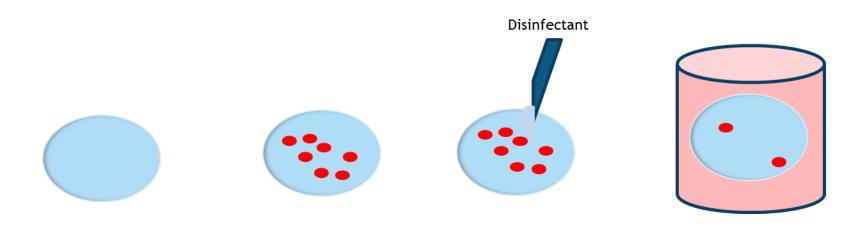



STERIS


Disinfectant testing

Step 1: Test carrier

- ✓ 1- 3 controls:
 - One positive control with no disinfectant
 - 2. One to confirm neutralization does not affect the bacteria
- 3. Recovery validation control
- ✓ 1-3 tests


Step 2: Contamination of the test carrier Step 3: Disinfectant applied in the concentration at which it is used in practice and left at appropriate time Step 4 – 5 - 6: Beaker of neutralizing solution before being rinsed. Micro-organism presen

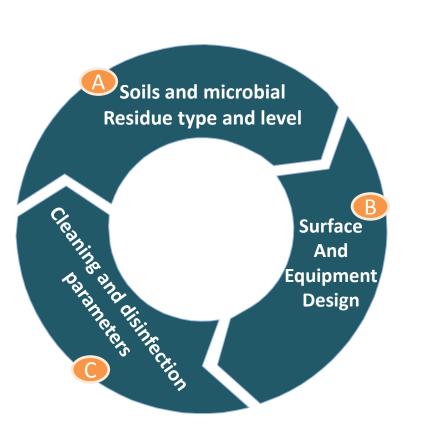
Micro-organism present in the rinsing solution are investigated, followed by enumeration.

Log reduction= #bacteria control - #bacteria treated

Reference strains

Reference strains:

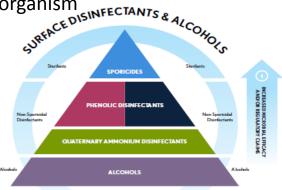
- ATCC 15442 : Pseudomonas aeruginosa
- ATCC 6538 : Staphylococcus aureus
- ATCC 10541 : Enterococcus hirae
- ATCC 10536 : Escherichia coli
- ATCC 10231 : Candida albicans
- ATCC 16404 : Aspergillus brasiliensis


Regulatory agencies expect isolate from actual environment.

Approach for Cleaning and Disinfection Process and non-Process Equipment

INDUSTRY PRACTICE

🛢 STERIS


Life Sciences

Microbial residue: Is the cleaner agent used efficient

	Microorganism	Examples
More Resistant	Prions	Scrapie, Creutzfeld-Jacob disease, Chronic wasting disease
	Bacterial Spores	Bacillus, Geobacillus, Clostridium
	Protozoal Oocysts	Cryptosporidium
	Helminth Eggs	Ascaris, Enterobius
	Mycobacteria	Mycobacterium tuberculosis, M. terrae, M. chelonae
	Small, Non-Enveloped Viruses	Poliovirus, Parvoviruses, Papilloma viruses
	Protozoal Cysts	Giardia, Acanthamoeba
	Fungal Spores	Aspergillus, Penicillium
	Gram negative bacteria	Pseudomonas, Providencia, Escherichia
	Vegetative Fungi and Algae	Aspergillus, Trichophyton, Candida, Chlamydomonas
	Vegetative Helminths and Protozoa	Ascaris, Cryptosporidium, Giardia
	Large, non-enveloped viruses	Adenoviruses, Rotaviruses
	Gram positive bacteria	Staphylococcus, Streptococcus, Enterococcus
Less Resistant	Enveloped viruses	HIV, Hepatitis B virus, Herpes Simplex virus

- Material substrate, design and soiling condition
- Cleaning and Disinfection or Sanitization program against microorganism

Source: Image from McDonnell, "Antisepsis, Disinfection, and Sterilization: Types, Action, and Resistance" 2007, ASM

1. PRODUCTS AT THE BASE OF THE PYRAMID ARE MOST FREQUENTLY USED AND ARE GENERALLY NOT SPORICIDAL PROGRESSION UP THE PYRAMID INDICATES STRONGER PERFORMANCE OVERALLANDA BROADER SPECTRUM OF CLAIMS

Thank You

For your listening

El Azab Walid Technical Service Manager – STERIS Walid_elazab@steris.com +32479790273

