Lufttechnische Dienstleistungen für Reinräume

www.crt-ag.ch info@crt-ag.ch +41 (0)55 642 65 65

- Vorstellung CRT Cleanroom-Technology AG/GmbH
- Messtechnik & Dienstleistungen
 - 1. Luftgeschwindigkeit resp. Luftvolumenstrom
 - 2. Differenzdruck
 - 3. Filterlecktest (> lokale Penetration; integrale Penetration)
 - 4. Reinraumklasse

CRT Cleanroom-Technology

- Die CRT ist ein messtechnischer, neutraler Fachbetrieb auf dem Gebiet der Reinraumtechnik
- Gründung der CRT im Jahr 2013 in Deutschland und der Schweiz
- >30 Mitarbeiter, Hauptgebiet DACH-Region (weltweiter Einsatz)
- Qualitätsmanagement nach ISO 9001:2008

Tätigkeitsfelder Messtechnik & Wartung

 Durchführung von physikalischen Qualifizierungen/Re-Qualifizierungen (gemäss EN ISO 14644 und EU-GMP-Leitfaden Annex 1)

Erstellung individueller Arbeitsanweisungen und Dokumente

- > Strömungsvisualisierungen/Rauchstudien
- Mikrobiologische Messungen
- > Beratung bei Qualitätssicherungsmassnahmen
- > Beratung für Optimierung und Effizienzsteigerung von Reinräumen

Chemie

Pharma

Medizintechnik/ Gesundheitswesen

Forschungs- und Laboreinrichtungen

Kunststoffindustrie

Richtlinien & Normen

> ISO 14644

"Reinräume und zugehörige Reinraumbereiche"

> VDI 2083

"Reinraumtechnik"

> SWKI VA105-01

"Raumlufttechnische Anlagen in medizinisch genutzten Räumen"

EG-Leitfaden der Guten Herstellungspraxis (Annex 1)

"Herstellung steriler Arzneimittel"

Guidance for Industry

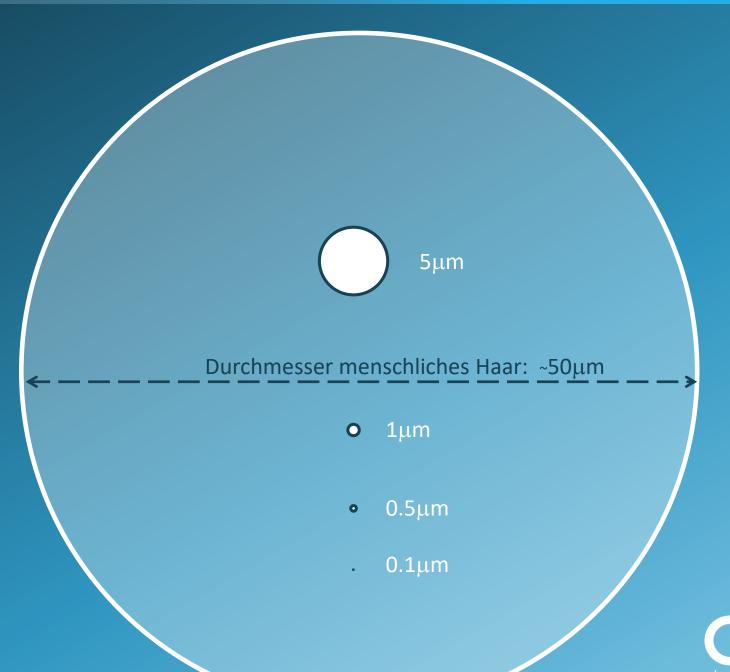
"Sterile Drug Products Produced by Aseptic Processing — Current Good Manufacturing Practice"

(Re-)Qualifizierung von Reinräumen

- 1. Luftgeschwindigkeit resp. Luftvolumenstrom *
- 2. Differenzdruck *
- 3. Filterlecktest (> lokale Penetration; integrale Penetration)
- 4. Reinraumklasse *
- 5. Strömungsvisualisierung

Allgemeines

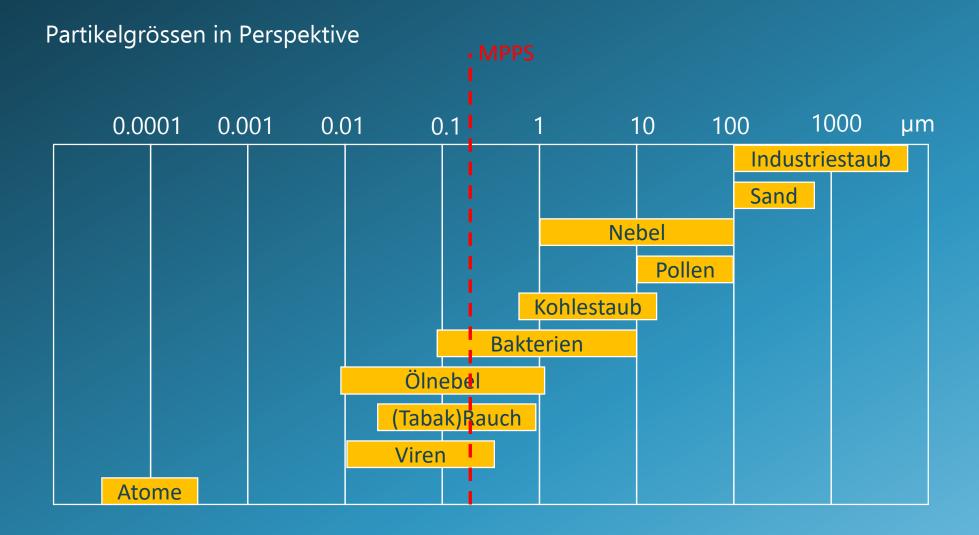
Partikelkonzentrationen Aussenluft vs. reine Bereiche


Messort	Partikelkonzentration pro m³ (≥0.5µm)
Industriegegend mit Smog	≤ 1′000′000′000
Industriegegend	30′000′000—60′000′000
Grossstadt	10′000′000—100′000′000
Reinraum ISO Klasse 7	≤ 352′000
Reinraum ISO Klasse 6	≤ 35′200
Reinraum ISO Klasse 5	≤ 3′520
Reinraum ISO Klasse 4	≤ 352
Reinraum ISO Klasse 3	≤ 35

10 ⁹
107
107-108
105
104
103
102
10 ¹

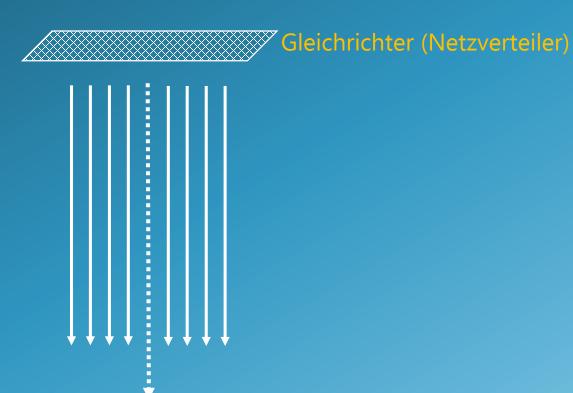
Allgemeines

Partikelgrössen in Perspektive


Allgemeines

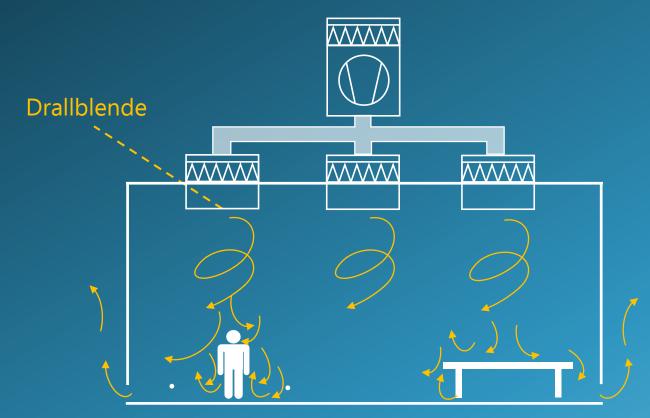
Partikelgrössen in Perspektive

Allgemeines



1. Luftgeschwindigkeit bzw. Luftvolumenstrom

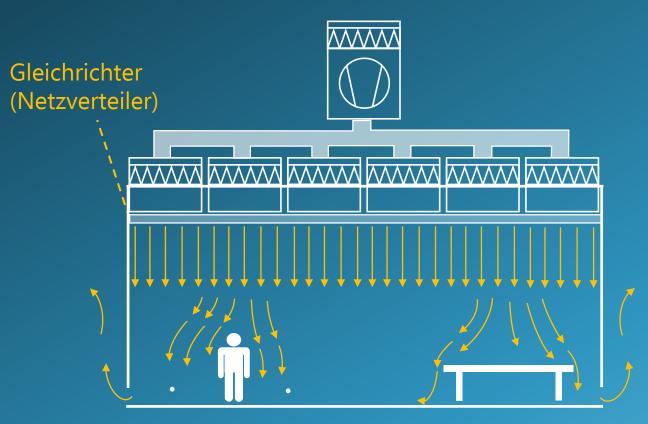
Turbulente Verdünnungsströmung


> Turbulenzarme Verdrängungsströmung

1. Luftgeschwindigkeit bzw. Luftvolumenstrom

Turbulente Verdünnungsströmung

- Punktuelle Filterauslässe
- Verdünnung der Partikelkonzentration
- Keine gleichmässig gerichtete Luftströmung
- Querverteilung der Partikel im Raum


Messung der Geschwindigkeit

→ Zuluftvolumenstrom [m³/h]

1. Luftgeschwindigkeit bzw. Luftvolumenstrom

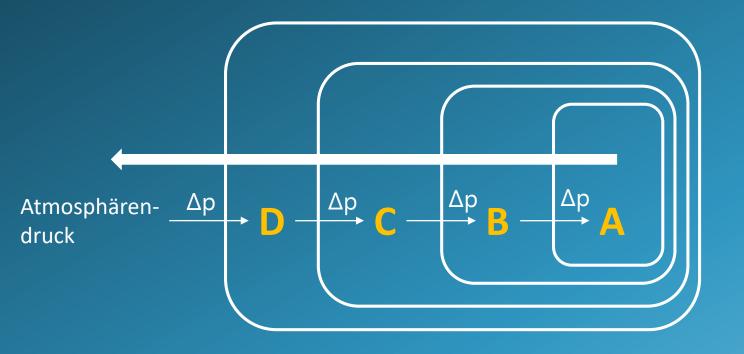
Turbulenzarme Verdrängungsströmung

- Ganzflächige Filterbelegung (in Zone)
- Verdrängung der Kontaminationen
- Gleichmässig gerichtete Luftströmung
- Keine Querverteilung der Partikel im Raum

Messung der Geschwindigkeitsverteilung
→ Gleichmässigkeit

2. Differenzdruck

Anwendungsbereiche:

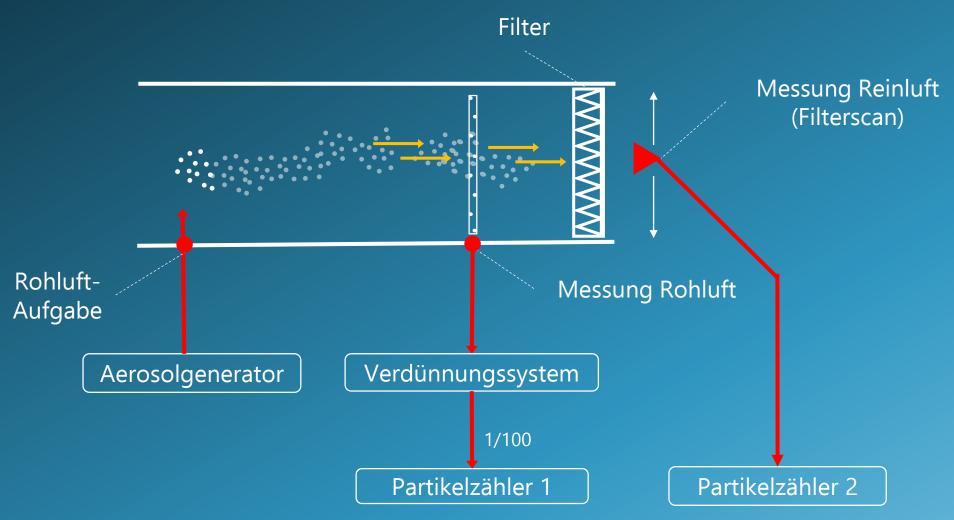

- > **Druckdifferenzen** zwischen Räumen (Druckstufenkonzepte)
- > Bestimmung des Filterwiderstandes
- > Bestimmung von **Strömungsgeschhwindigkeiten** über dynamischen Druck

2. Differenzdruck

Druckstufenkonzept:

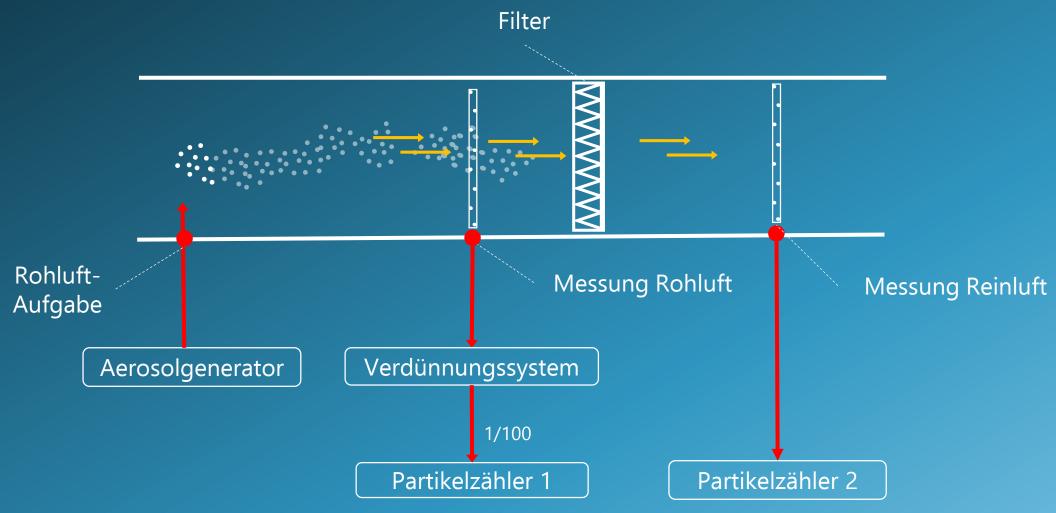
> Gewährleistet Raumdruckdifferenzen zwischen versch. Reinheitsklassen

- > **ISO 14644-4** 5—20 Pa
- **VDI 2083 (Blatt 3)** 5—20 Pa
- **EG-GMP-Leitfaden (Annex 1)** 10—15 Pa


3. Filterlecktest

- Scanverfahren
 - Endständige Filter
 - > Für Filter mit MPPS-Durchdringungsrate
 ≥ 0.05% (≥ H13)
 - > Bevorzugtes Verfahren zur Leckprüfung

- > Integrale Penetration
 - In Luftleitungen eingebaute Filter
 - > Für Filter mit MPPS-Durchdringungsrate
 ≥ 0.005% (≤ H14)
 - Bedeutend geringere Sensibilität zur
 Entdeckung von Leckagen als Filterscanning



3. Filterlecktest — Scanning

3. Filterlecktest — integrale Penetration

4. Reinraumklasse

Akzeptanzkriterien gem. ISO 14644-1: 2015

$$C_n = 10^N \times \left(\frac{0.1}{D}\right)^{2.08}$$

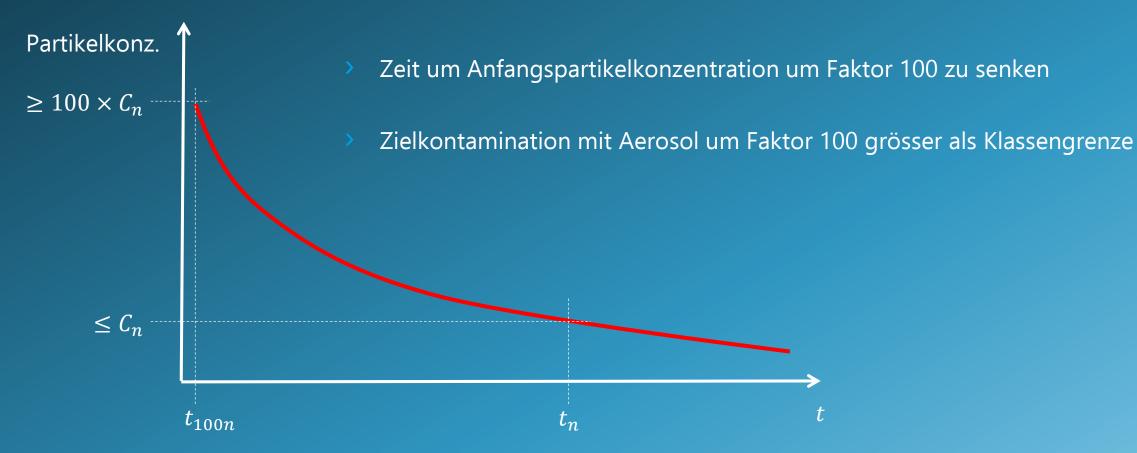
ISO-Klassifizierung	Max. erlaubte Partikelzahl pro m³					
	0.1 μm	0.2 µm	0.3 µm	0.5 µm	1.0 µm	5.0 µm
ISO Klasse 1	10					
ISO Klasse 2	100	24	10			
ISO Klasse 3	1'000	237	102	35		
ISO Klasse 4	10'000	2'370	1'020	352	83	
ISO Klasse 5	100'000	23'700	10'200	3'520	832	
ISO Klasse 6	1'000'000	237'000	102'000	35'200	8'320	293
ISO Klasse 7				352'000	83'200	2'930
ISO Klasse 8				3'520'000	832'000	29'300
ISO Klasse 9				35'200'000	8'320'000	293'000

4. Reinraumklasse

Akzeptanzkriterien gem. **EU-Guideline to GMP (Annex 1)** (pharmazeutische, medizinische, biotechnologische Bereiche)

$N = \log$	$\int C_n$	
	$\left(\frac{0.1}{D}\right)^{2.08}$	

Klassifizierung	Max. erlaubte Partikelzahl pro m³			
	At rest		In oper	ation
	0.5 µm	5.0 µm	0.5 µm	5.0 µm
Α	3'520	20	3'520	20
В	3'520	29	352'000	2'900
С	352'000	2'900	352'0000	29'000
D	352'0000	29'000		



At rest	In operation
ISO Klasse 4.8	ISO Klasse 4.8
ISO Klasse 5	ISO Klasse 7
ISO Klasse 7	ISO Klasse 8
ISO Klasse 8	

- > Anzahl Messpunkte (nach Raumgrösse)
- Mindestprobevolumen (nach Klassengrenze)
- Mindestmessdauer (nach Probevolumen und Ansaugkapazität Partikelzähler

4. Reinraumklasse (Erholzeitmessungen)

REINE

PRODUKTIVITÄT

Reinräume sind komplexe Anlagen mit hohen Betriebskosten und kritischen Auswirkungen auf Produkt und Menschen. Regelmässige Wartung und Requalifizierung gemäss geltenden Normen sind daher für einen gesicherten Betrieb erforderlich.

Danke für Ihre Aufmerksamkeit.

>>> Besuchen Sie uns doch an unserem Stand!